Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
3.
Genome Res ; 34(2): 189-200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408788

RESUMO

Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA/genética , Genômica , Camundongos Knockout , Endodesoxirribonucleases/genética
4.
Hypertension ; 81(4): 876-886, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362745

RESUMO

BACKGROUND: The relationship between placental pathology and the maternal syndrome of preeclampsia is incompletely characterized. Mismatch between placental nutrient supply and fetal demands induces stress in the syncytiotrophoblast, the layer of placenta in direct contact with maternal blood. Such stress alters the content and increases the release of syncytiotrophoblast extracellular vesicles (STB-EVs) into the maternal circulation. We have previously shown 5'-tRNA fragments (5'-tRFs) constitute the majority of small RNA in STB-EVs in healthy pregnancy. 5'-tRFs are produced in response to stress. We hypothesized STB-EV 5'-tRF release might change in preeclampsia. METHODS: We perfused placentas from 8 women with early-onset preeclampsia and 6 controls, comparing small RNA expression in STB-EVs. We used membrane-affinity columns to isolate maternal plasma vesicles and investigate placental 5'-tRFs in vivo. We quantified 5'-tRFs from circulating STB-EVs using a placental alkaline phosphatase immunoassay. 5'-tRFs and scrambled RNA controls were added to monocyte, macrophage and endothelial cells in culture to investigate transcriptional responses. RESULTS: 5'-tRFs constitute the majority of small RNA in STB-EVs from both preeclampsia and normal pregnancies. More than 900 small RNA fragments are differentially expressed in preeclampsia STB-EVs. Preeclampsia-dysregulated 5'-tRFs are detectable in maternal plasma, where we identified a placentally derived load. 5'-tRF-Glu-CTC, the most abundant preeclampsia-upregulated 5'-tRF in perfusion STB-EVs, is also increased in preeclampsia STB-EVs from maternal plasma. 5'-tRF-Glu-CTC induced inflammation in macrophages but not monocytes. The conditioned media from 5'-tRF-Glu-CTC-activated macrophages reduced eNOS (endothelial NO synthase) expression in endothelial cells. CONCLUSIONS: Increased release of syncytiotrophoblast-derived vesicle-bound 5'-tRF-Glu-CTC contributes to preeclampsia pathophysiology.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Células Endoteliais/metabolismo , Trofoblastos/metabolismo , Vesículas Extracelulares/metabolismo , RNA de Transferência/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
5.
Prenat Diagn ; 43(11): 1385-1393, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37655424

RESUMO

OBJECTIVE: Long cell-free DNA (cfDNA) can be found in the plasma of pregnant women and cancer patients. We investigated if droplet digital PCR (ddPCR) can analyze such molecules for diagnostic purposes using preeclampsia as a model. METHOD: Plasma samples from ten preeclamptic and sixteen normal pregnancies were analyzed. Two ddPCR assays targeting a single-copy gene, VCP, and one ddPCR assay targeting LINE-1 repetitive regions were used to measure the percentages of long cfDNA >533, 1001, and 170 bp, respectively. The LINE-1 assay was developed as guided by in silico PCR analyses to better differentiate preeclamptic and normal pregnancies. RESULTS: Preeclamptic patients had a significantly lower median percentage of long cfDNA than healthy pregnant controls, as determined by the LINE-1 170 bp assay (28.9% vs. 35.1%, p < 0.0001) and the VCP 533 bp assay (6.6% vs. 8.7%, p = 0.014). The LINE-1 assay provided a better differentiation than the VCP 533 bp assay (area under ROC curves, 0.94 vs. 0.79). CONCLUSION: ddPCR is a cost-effective approach for unlocking diagnostic information carried by long cfDNA in plasma and may have applications for the detection of preeclampsia. Further longitudinal studies with larger cohorts are required to assess the clinical utility of this test.

6.
Mol Diagn Ther ; 27(5): 563-571, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474843

RESUMO

Liquid biopsy using cell-free DNA (cfDNA) has gained global interest as a molecular diagnostic tool. However, the analysis of cfDNA in cancer patients and pregnant women has been focused on short DNA molecules (e.g., ≤ 600 bp). With the detection of long cfDNA in the plasma of pregnant women and cancer patients in two recent studies, a new avenue of long cfDNA-based liquid biopsy has been opened. In this review, we summarize our current knowledge in this nascent field of long cfDNA analysis, focusing on the fragmentomic and epigenetic features of long cfDNA. In particular, long-read sequencing enabled single-molecule methylation analysis and subsequent determination of the tissue-of-origin of long cfDNA, which has promising clinical potential in prenatal and cancer testing. We also examine some of the limitations that may hinder the immediate clinical applications of long cfDNA analysis and the current efforts involved in addressing them. With concerted efforts in this area, it is hoped that long cfDNA analysis will add to the expanding armamentarium of liquid biopsy.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Feminino , Gravidez , Biópsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , DNA/genética , Metilação de DNA
7.
Proc Natl Acad Sci U S A ; 120(17): e2220982120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075072

RESUMO

Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5' 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as "founder" end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.


Assuntos
Ácidos Nucleicos Livres , Humanos , Camundongos , Animais , Ácidos Nucleicos Livres/genética , Desoxirribonucleases/genética , Camundongos Knockout , Endonucleases/genética , Fragmentação do DNA , Endodesoxirribonucleases/genética
8.
Clin Chem ; 69(2): 168-179, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322427

RESUMO

BACKGROUND: Recent studies using single molecule, real-time (SMRT) sequencing revealed a substantial population of analyzable long cell-free DNA (cfDNA) in plasma. Potential clinical utilities of such long cfDNA in pregnancy and cancer have been demonstrated. However, the performance of different long-read sequencing platforms for the analysis of long cfDNA remains unknown. METHODS: Size biases of SMRT sequencing by Pacific Biosciences (PacBio) and nanopore sequencing by Oxford Nanopore Technologies (ONT) were evaluated using artificial mixtures of sonicated human and mouse DNA of different sizes. cfDNA from plasma samples of pregnant women at different trimesters, hepatitis B carriers, and patients with hepatocellular carcinoma were sequenced with the 2 platforms. RESULTS: Both platforms showed biases to sequence longer (1500 bp vs 200 bp) DNA fragments, with PacBio showing a stronger bias (5-fold overrepresentation of long fragments vs 2-fold in ONT). Percentages of cfDNA fragments 500 bp were around 6-fold higher in PacBio compared with ONT. End motif profiles of cfDNA from PacBio and ONT were similar, yet exhibited platform-dependent patterns. Tissue-of-origin analysis based on single-molecule methylation patterns showed comparable performance on both platforms. CONCLUSIONS: SMRT sequencing generated data with higher percentages of long cfDNA compared with nanopore sequencing. Yet, a higher number of long cfDNA fragments eligible for the tissue-of-origin analysis could be obtained from nanopore sequencing due to its much higher throughput. When analyzing the size and end motif of cfDNA, one should be aware of the analytical characteristics and possible biases of the sequencing platforms being used.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hepáticas , Sequenciamento por Nanoporos , Humanos , Feminino , Gravidez , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , DNA/genética
9.
Clin Chem ; 69(2): 189-201, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576350

RESUMO

BACKGROUND: Nuclear-derived cell-free DNA (cfDNA) molecules in blood plasma are nonrandomly fragmented, bearing a wealth of information related to tissues of origin. DNASE1L3 (deoxyribonuclease 1 like 3) is an important player in shaping the fragmentation of nuclear-derived cfDNA molecules, preferentially generating molecules with 5 CC dinucleotide termini (i.e., 5 CC-end motif). However, the fragment end properties of microbial cfDNA and its clinical implication remain to be explored. METHODS: We performed end motif analysis on microbial cfDNA fragments in plasma samples from patients with sepsis. A sequence context-based normalization method was used to minimize the potential biases for end motif analysis. RESULTS: The end motif profiles of microbial cfDNA appeared to resemble that of nuclear cfDNA (Spearman correlation coefficient: 0.82, P value 0.001). The CC-end motif was the most preferred end motif in microbial cfDNA, suggesting that DNASE1L3 might also play a role in the fragmentation of microbe-derived cfDNA in plasma. Of note, differential end motifs were present between microbial cfDNA originating from infection-causing pathogens (enriched at the CC-end) and contaminating microbial DNA potentially derived from reagents or the environment (nearly random). The use of fragment end signatures allowed differentiation between confirmed pathogens and contaminating microbes, with an area under the receiver operating characteristic curve of 0.99. The performance appeared to be superior to conventional analysis based on microbial cfDNA abundance alone. CONCLUSIONS: The use of fragmentomic features could facilitate the differentiation of underlying contaminating microbes from true pathogens in sepsis. This work demonstrates the potential usefulness of microbial cfDNA fragmentomics in metagenomics analysis.


Assuntos
Ácidos Nucleicos Livres , Sepse , Humanos , DNA/genética , Sepse/diagnóstico , Fragmentação do DNA
10.
NEJM Evid ; 2(7): EVIDoa2200309, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38320164

RESUMO

EBV DNA Rescreening StudyPatients who had participated in a previous plasma Epstein-Barr virus (EBV) DNA screening study were rescreened. Of the 17,838 rescreened patients, 423 had persistently detectable plasma EBV DNA; 24 of these patients developed nasopharyngeal carcinoma. Sixty-seven percent of them received a diagnosis of early-stage disease and had increased progression-free survival compared with historical controls.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Herpesvirus Humano 4/genética , Prognóstico , DNA Viral
11.
Proc Natl Acad Sci U S A ; 119(44): e2209852119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288287

RESUMO

Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5' ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson's absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hepáticas , Gravidez , Feminino , Humanos , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Hepáticas/genética , Epigênese Genética , DNA/genética , Citosina , Guanina , Nucleotídeos , Fosfatos
12.
Elife ; 112022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36098684

RESUMO

Physician-scientists have epitomized the blending of deep, rigorous impactful curiosity with broad attention to human health for centuries. While we aspire to prepare all physicians with an appreciation for these skills, those who apply them to push the understanding of the boundaries of human physiology and disease, to advance treatments, and to increase our knowledge base in the arena of human health can fulfill an essential space for our society, economies, and overall well-being. Working arm in arm with basic and translational scientists as well as expert clinicians, as peers in both groups, this career additionally serves as a bridge to facilitate the pace and direction of research that ultimately impacts health. Globally, there are remarkable similarities in challenges in this career path, and in the approaches employed to overcome them. Herein, we review how different countries train physician-scientists and suggest strategies to further bolster this career path.


Assuntos
Pesquisa Biomédica , Médicos , Pesquisa Biomédica/educação , Escolha da Profissão , Humanos
14.
PLoS Genet ; 18(7): e1010262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793278

RESUMO

Urinary cell-free DNA (ucfDNA) is a potential biomarker for bladder cancer detection. However, the biological characteristics of ucfDNA are not well understood. We explored the roles of deoxyribonuclease 1 (DNASE1) and deoxyribonuclease 1-like 3 (DNASE1L3) in the fragmentation of ucfDNA using mouse models. The deletion of Dnase1 in mice (Dnase1-/-) caused aberrations in ucfDNA fragmentation, including a 24-fold increase in DNA concentration, and a 3-fold enrichment of long DNA molecules, with a relative decrease of fragments with thymine ends and reduction of jaggedness (i.e., the presence of single-stranded protruding ends). In contrast, such changes were not observed in mice with Dnase1l3 deletion (Dnase1l3-/-). These results suggested that DNASE1 was an important nuclease contributing to the ucfDNA fragmentation. Western blot analysis revealed that the concentration of DNASE1 protein was higher in urine than DNASE1L3. The native-polyacrylamide gel electrophoresis zymogram showed that DNASE1 activity in urine was higher than that in plasma. Furthermore, the proportion of ucfDNA fragment ends within DNase I hypersensitive sites (DHSs) was significantly increased in Dnase1-deficient mice. In humans, patients with bladder cancer had lower proportions of ucfDNA fragment ends within the DHSs when compared with participants without bladder cancer. The area under the curve (AUC) for differentiating patients with and without bladder cancer was 0.83, suggesting the analysis of ucfDNA fragmentation in the DHSs may have potential for bladder cancer detection. This work revealed the intrinsic links between the nucleases in urine and ucfDNA fragmentomics.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Bexiga Urinária , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Endodesoxirribonucleases/genética , Endonucleases , Humanos , Camundongos , Camundongos Knockout , Neoplasias da Bexiga Urinária/genética
15.
Nat Rev Gastroenterol Hepatol ; 19(10): 670-681, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35676420

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal causes of cancer-related death worldwide. The treatment of HCC remains challenging and is largely predicated on early diagnosis. Surveillance of high-risk groups using abdominal ultrasonography, with or without serum analysis of α-fetoprotein (AFP), can permit detection of early, potentially curable tumours, but is limited by its insensitivity. Reviewed here are two current approaches that aim to address this limitation. The first is to use old re-emerged empirically derived biomarkers such as AFP, now applied within statistical models. The second is to use circulating nucleic acid biomarkers, which include cell-free DNA (for example, circulating tumour DNA, cell-free mitochondrial DNA and cell-free viral DNA) and cell-free RNA, applying modern molecular biology-based technologies and machine learning techniques closely allied to the underlying biology of cancer. Taken together, these approaches are likely to be complementary. Both hold considerable promise for achieving earlier diagnosis as well as offering additional functionalities including improved monitoring of therapy and prediction of response thereto.


Assuntos
Carcinoma Hepatocelular , DNA Tumoral Circulante , Neoplasias Hepáticas , Biomarcadores , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , DNA Mitocondrial , DNA Viral , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , alfa-Fetoproteínas
16.
Clin Chem ; 68(9): 1151-1163, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587130

RESUMO

BACKGROUND: Analysis of circulating tumor DNA has become increasingly important as a tool for cancer care. However, the focus of previous studies has been on short fragments of DNA. Also, bisulfite sequencing, a conventional approach for methylation analysis, causes DNA degradation, which is not ideal for the assessment of long DNA properties and methylation patterns. This study attempted to overcome such obstacles by single-molecule sequencing. METHODS: Single-molecule real-time (SMRT) sequencing was used to sequence plasma DNA. We performed fragment size and direct methylation analysis for each molecule. A methylation score concerning single-molecule methylation patterns was used for cancer detection. RESULTS: A substantial proportion of plasma DNA was longer than 1 kb with a median of 16% in hepatocellular carcinoma (HCC) patients, hepatitis B virus carriers, and healthy individuals. The longest plasma DNA molecule in the HCC patients was 39.8 kb. Tumoral cell-free DNA (cfDNA) was generally shorter than nontumoral cfDNA. The longest tumoral cfDNA was 13.6 kb. Tumoral cfDNA had lower methylation levels compared with nontumoral cfDNA (median: 59.3% vs 76.9%). We developed and analyzed a metric reflecting single-molecule methylation patterns associated with cancer, named the HCC methylation score. HCC patients displayed significantly higher HCC methylation scores than those without HCC. Interestingly, compared to using short cfDNA (area under the receiver operating characteristic [ROC] curve, AUC: 0.75), the use of long cfDNA molecules greatly enhanced the discriminatory power (AUC: 0.91). CONCLUSIONS: A previously unidentified long cfDNA population was revealed in cancer patients. The presence and direct methylation analysis of these molecules open new possibilities for cancer liquid biopsy.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Livres/genética , DNA , Metilação de DNA , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
17.
Diagnostics (Basel) ; 12(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454026

RESUMO

Cell-free DNA (cfDNA) in bodily fluids has rapidly transformed the development of noninvasive prenatal testing, cancer liquid biopsy, and transplantation monitoring. Plasma cfDNA consists of a mixture of molecules originating from various bodily tissues. The study of the fragmentation patterns of cfDNA, also referred to as 'fragmentomics', is now an actively pursued area of biomarker research. Clues that cfDNA fragmentation patterns might carry information concerning the tissue of origin of cfDNA molecules have come from works demonstrating that circulating fetal, tumor-derived, and transplanted liver-derived cfDNA molecules have a shorter size distribution than the background mainly of hematopoietic origin. More recently, an improved understanding of cfDNA fragmentation has provided many emerging fragmentomic markers, including fragment sizes, preferred ends, end motifs, single-stranded jagged ends, and nucleosomal footprints. The intrinsic biological link between activities of various DNA nucleases and characteristic fragmentations has been demonstrated. In this review, we focus on the biological properties of cell-free DNA unveiled recently and their potential clinical applications.

18.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451374

RESUMO

Cell-free extrachromosomal circular DNA (eccDNA) as a distinct topological form from linear DNA has recently gained increasing research interest, with possible clinical applications as a class of biomarkers. In this study, we aimed to explore the relationship between nucleases and eccDNA characteristics in plasma. By using knockout mouse models with deficiencies in deoxyribonuclease 1 (DNASE1) or deoxyribonuclease 1 like 3 (DNASE1L3), we found that cell-free eccDNA in Dnase1l3-/- mice exhibited larger size distributions than that in wild-type mice. Such size alterations were not found in tissue eccDNA of either Dnase1-/- or Dnase1l3-/- mice, suggesting that DNASE1L3 could digest eccDNA extracellularly but did not seem to affect intracellular eccDNA. Using a mouse pregnancy model, we observed that in Dnase1l3-/- mice pregnant with Dnase1l3+/- fetuses, the eccDNA in the maternal plasma was shorter compared with that of Dnase1l3-/- mice carrying Dnase1l3-/- fetuses, highlighting the systemic effects of circulating fetal DNASE1L3 degrading the maternal eccDNA extracellularly. Furthermore, plasma eccDNA in patients with DNASE1L3 mutations also exhibited longer size distributions than that in healthy controls. Taken together, this study provided a hitherto missing link between nuclease activity and the biological manifestations of eccDNA in plasma, paving the way for future biomarker development of this special form of DNA molecules.


Assuntos
DNA , Feto , Animais , DNA Circular/genética , Desoxirribonucleases/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Feminino , Feto/metabolismo , Humanos , Camundongos , Camundongos Knockout , Gravidez
20.
NPJ Genom Med ; 7(1): 14, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197474

RESUMO

Single-stranded ends of double-stranded DNA (jagged ends) are more abundant in urinary DNA than in plasma DNA. However, the lengths of jagged ends in urinary DNA remained undetermined, as a previous method used for urinary DNA jagged end sequencing analysis (Jag-seq) relied on unmethylation at CpG sites, limiting the resolution. Here, we performed high-resolution Jag-seq analysis using methylation at non-CpG cytosine sites, allowing determination of exact length of jagged ends. The urinary DNA bore longer jagged ends (~26-nt) than plasma DNA (~17-nt). The jagged end length distribution displayed 10-nt periodicities in urinary DNA, which were much less observable in plasma DNA. Amplitude of the 10-nt periodicities increased in patients with renal cell carcinoma. Heparin treatment of urine diminished the 10-nt periodicities. The urinary DNA jagged ends often extended into nucleosomal cores, suggesting potential interactions with histones. This study has thus advanced our knowledge of jagged ends in urine DNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA